

Federal Water Quality Association (FWQA) Briefing on

Sustainable Infrastructure:
Synergystic Solutions to
Enhanced Nutrient Removal and CSO Control
presented by

Jerry N. Johnson General Manager

Blue Plains Advanced Wastewater Treatment Plant

- Serves over 2 million people in DC, MD, VA
- Largest advanced wastewater treatment plant in the world
- 370 million gallons per day capacity
- Services combined & separate sewer systems

Blue Plains Advanced Wastewater
Treatment Plant

U.S. Environmental Protection Agency (EPA) *Sustainable Infrastructure Initiative*

Sustainable infrastructure defined as development that "meets the needs of the present generation without compromising the ability of future generations to meet their needs." (*1)

Four Pillars of Sustainable Infrastructure

- 1. Better Management
- 2. Full Cost Pricing
- 3. Efficient Water Use
- 4. Watershed Approaches

District of Columbia Sustainable Infrastructure Initiative

Two Major DCWASA Water Quality Programs

- 1. The Combined Sewer Overflow Long Term Control Plan: \$2 billion, 20 years
- 2. Enhanced Nutrient Reduction: TN (Total Nitrogen) \$1 billion, 7 years

Approximately one-half of WASA's \$6 billion (lifetime budget) Capital Program

Regulatory Requirements and Approach

- 1. Federal Clean Water Act
 - a. Combined Sewer Overflow (CSO) Control Policy
 - b. Chesapeake Bay Program (Watershed Approach to Water Quality)
- 2. District of Columbia Water Quality Standards
- Regulators' Consideration of Innovative Approaches to support infrastructure sustainability

Challenge of Meeting New Nitrogen Limit

- Massive size of Blue Plains
- Wet weather flows from Combined Sewer System

- Blue Plains improvements \$2.3 B capital program over 10 years
 - Total nitrogen enhanced nutrient removal: \$950 M
 - Other Blue Plains projects: \$1.4 B
- Large 10-yr CIP budget
 - CSO Long Term Control Plan: \$2.209 B
 - Wastewater collection & transmission: \$302 M
 - Water programs: \$1.016 B
 - Total: \$5.9 B

The Solution: Innovative Approach to Handling Wet Weather Flows in Nutrient Reduction Process

- Expand CSO tunnel storage to even out flow peaks
- Construct wet weather treatment system (new European technologyenhanced clarification)
- Operate Blue Plains at steadier flow rates during storms – design nitrogen removal for these flows

Cost = \$800 Million vs. \$1.3 billion for conventional approach

Total Nitrogen/Wet Weather Plan

Extend CSO Tunnel by 3.5 miles:

- •23 feet diameter
- "Metro-sized"

Construct nitrogen removal & innovative wet weather treatment system at Blue Plains

Red is approved LTCP Tunnel System

Yellow is proposed Tunnel Plan

Sustainable Elements

Long Term Control Plan

- Tunnel system lessens impact on the community above
- 2. Built with provisions to expand the system if it doesn't meet objectives / standards
- 3. Addresses overall wet weather issues
- 4. Passive hydraulic control
 - Uses gravity and wiers rather than gates, valves or other mechanical devices
 - Less need for power, hardware, maintenance and manpower

Sustainable Elements cont.

Enhanced Nutrient Removal – TN Program

- 1. Physical Treatment rather than Biological
 - a. Instant on-off: run only during storm events
 - b. Yields reduced O&M costs
- 2. New Technology-Enhanced Clarification
 - a. Greatly reduced site space required-conserves limited wastewater treatment plant site space
 - b. Greatly reduced capital cost

Summary

Synergystic Approach-Broad Based Wet Weather Management

Nutrient Control

- Savings in capital cost = \$500 million
- Significant savings in operations and maintenance costs of both systems

Long Term Control Plan

- Seven years savings in time for attainment of LTCP performance in the Anacostia River Basin
- Savings in Land Area

Underground tunnels preserve the land above Smaller footprint conserves space

